En busca del origen de los magnetares; astrónomos explican cómo se forman estos magnetos estelares

15/05/2014 - 12:30 am
Los magnetares son un misterio para los astrónomos, pero ahora podrían estar cerca de descubrir su origen. Foto: ESO
Los magnetares son un misterio para los astrónomos, pero ahora podrían estar cerca de descubrir su origen. Foto: ESO

Ciudad de México, 15 de mayo (SinEmbargo).– Cuando una estrella masiva colapsa por su propia gravedad durante una explosión de supernova, puede formar, o bien una estrella de neutrones o un agujero negro. Los magnetares son los extraños remanentes superdensos de explosiones de supernovas y los imanes más potentes conocidos en el universo. Ahora, un equipo de astrónomos europeos, utilizando el telescopio VLT (Very Large Telescope) del Observatorio Europeo Austral (ESO), cree haber hallado, por primera vez, a la estrella compañera de un magnetar, este descubrimiento ayuda (después de 35 años) a explicar cómo se forman estos magnetos estelares y por qué esta estrella particular no colapsó en agujero negro tal y como esperarían los astrónomos.

Los magnetares son una forma inusual y muy exótica de estrella de neutrones. Como todos estos objetos extraños, son pequeños y extraordinariamente densos; tanto, que una cucharadita de materia de estrella de neutrones tendría una masa de aproximadamente mil millones de toneladas, pero también tienen campos magnéticos extremadamente potentes. Las superficies de los magnetares liberan grandes cantidades de rayos gamma cuando atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar (starquake en inglés), consecuencia de las enormes tensiones que tienen lugar en sus cortezas.

El cúmulo estelar Westerlund 1, situado a 16 mil años luz de la Tierra, en la constelación austral de Ara (el Altar), alberga uno de las dos docenas de magnetares conocidos en la Vía Láctea. Se llama CXOU J164710.2-455216 y ha intrigado enormemente a los astrónomos, publicó ESO en un comunicado.

"En nuestro anterior trabajo demostramos que el magnetar del cúmulo Westerlund 1 debe haber nacido de la explosiva muerte de una estrella con unas 40 veces la masa del Sol. Pero este hecho representa un problema en sí mismo, ya que se supone que, tras morir, las estrellas tan masivas colapsan para formar agujeros negros, no estrellas de neutrones. No entendíamos cómo podía haberse transformado en magnetar", dijo Simon Clark, autor principal del artículo que dio a conocer estos resultados.

Sin embargo, los astrónomos propusieron como solución a este misterio sugerir que el magnetar se formó por las interacciones de dos estrellas muy masivas en órbita una en torno a la otra, en un sistema binario tan compacto que encajaría dentro de la órbita de la Tierra alrededor del Sol. Pero, hasta ahora, no se había detectado ninguna estrella acompañante en la ubicación del magnetar en Westerlund 1, así que los astrónomos utilizaron el VLT para buscarlo en otras partes del cúmulo. Buscaron estrellas fugitivas (objetos que escapan del cúmulo a grandes velocidades) que podría haber sido expulsadas de la órbita por la explosión de supernova que formó al magnetar. De esta manera, se descubrió que una estrella, conocida como Westerlund 1-5, parecía encajar perfectamente con lo que buscaban.

"No es sólo que esta estrella tenga la alta velocidad esperada si está siendo impulsada por una explosión de supernova, sino que además parece imposible replicar, en una estrella individual, las condiciones de baja masa, alta luminosidad y abundancia de carbono en la composición — un pista que indica que debe haberse formado, originalmente, con una compañera binaria", añadió Ben Ritchie de la Open University, coautor del nuevo artículo.

Este descubrimiento permitió a los astrónomos reconstruir la historia de la vida de la estrella que permitió la formación del magnetar en lugar del esperado agujero negro. En la primera etapa de este proceso, la estrella más masiva de la pareja comienza a quedarse sin combustible, transfiriendo sus capas externas a su compañera menos masiva (la cual está destinada a convertirse en magnetar) haciendo que gire cada vez más rápido. Esta rápida rotación parece ser el ingrediente esencial en la formación del campo magnético ultrafuerte del magnetar.

Ser una de las componentes de una estrella doble parece ser un ingrediente fundamental para formar un magnetar. Foto: ESO
Ser una de las componentes de una estrella doble parece ser un ingrediente fundamental para formar un magnetar. Foto: ESO

En la segunda etapa, como resultado de esta transferencia de masa, la propia compañera llega a ser tan masiva que, a su vez, desprende una gran cantidad de la masa recientemente adquirida. Gran parte de esta masa se pierde, pero una parte pasa de nuevo a la estrella original, la que todavía hoy vemos brillando y conocemos como Westerlund 1-5.

"Este proceso de intercambio de material ha sido el que ha proporcionado a Westerlund 1-5 su firma química única, y el que ha permitido que la masa de su compañera encoja a niveles lo suficientemente bajos como para que nazca un magnetar en lugar de un agujero negro — ¡una forma de pasarse la “patata caliente” con consecuencias cósmicas!", agregó Francisco Najarro del Centro de Astrobiología en España, y miembro del equipo de investigación.

De esta manera, en la receta para formar un magnetar, parece que un ingrediente fundamental es ser una de las componentes de una estrella doble. La rápida rotación generada por la transferencia de masas entre las dos estrellas parece necesaria para generar el campo magnético ultra fuerte y, posteriormente, una segunda fase de transferencia de masa permite al futuro magnetar adelgazar lo suficiente como para no colapsar en agujero negro en el momento de su muerte.

en Sinembargo al Aire

Opinión

Opinión en video