Aunque los astrónomos no pueden ver la materia oscura, pueden detectar su presencia indirectamente midiendo cómo su gravedad afecta a las estrellas y galaxias.
Madrid, 9 enero (EuropaPress).- El telescopio Hubble ha revelado que la materia oscura se une en grupos mucho más pequeños que los conocidos previamente, confirmando una predicción fundamental de la teoría de la “materia oscura fría”.
Todas las galaxias, de acuerdo con esta teoría, se forman y se incrustan dentro de las nubes de materia oscura. La materia oscura en sí misma consiste en partículas de movimiento lento o “frías” que se unen para formar estructuras que van desde cientos de miles de veces la masa de la galaxia de la Vía Láctea hasta grupos no más masivos que el peso de un avión comercial. En este contexto, “frío” se refiere a la velocidad de las partículas.
La observación del Hubble arroja nuevos conocimientos sobre la naturaleza de la materia oscura y cómo se comporta. “Hicimos una prueba de observación muy convincente para el modelo de materia oscura fría y la aprobó con gran éxito”, dijo en un comunicado Tommaso Treu, de la Universidad de California, Los Ángeles (UCLA), miembro del equipo de observación.
La materia oscura es una forma invisible de materia que constituye la mayor parte de la masa del universo y crea el andamiaje sobre el cual se construyen las galaxias. Aunque los astrónomos no pueden ver la materia oscura, pueden detectar su presencia indirectamente midiendo cómo su gravedad afecta a las estrellas y galaxias. Detectar las formaciones de materia oscura más pequeñas buscando estrellas incrustadas puede ser difícil o imposible, ya que contienen muy pocas estrellas.
Si bien se han detectado concentraciones de materia oscura alrededor de galaxias grandes y medianas, hasta ahora no se han encontrado grupos mucho más pequeños de materia oscura. Ante la falta de evidencia observacional para tales grupos a pequeña escala, algunos investigadores han desarrollado teorías alternativas, incluida la “materia oscura cálida”. Esta idea sugiere que las partículas de materia oscura se mueven rápidamente, comprimiéndose demasiado rápido para fusionarse y formar concentraciones más pequeñas. Las nuevas observaciones no respaldan este escenario, ya que encuentran que la materia oscura es “más fría” de lo que debería ser en la teoría alternativa de la materia oscura cálida.
“La materia oscura es más fría de lo que sabíamos a escalas más pequeñas”, dijo Anna Nierenberg, del Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California, líder de esta observación con el Hubble. “Los astrónomos han llevado a cabo otras pruebas de observación de las teorías de la materia oscura antes, pero la nuestra proporciona la evidencia más sólida hasta ahora de la presencia de pequeños grupos de materia oscura fría. Al combinar las últimas predicciones teóricas, herramientas estadísticas y nuevas observaciones del Hubble, ahora tenemos un resultado mucho más robusto de lo que era posible anteriormente”.
La caza de concentraciones de materia oscura sin estrellas ha resultado ser un desafío. Sin embargo, el equipo de investigación del Hubble utilizó una técnica en la que no necesitaban buscar la influencia gravitacional de las estrellas como trazadores de materia oscura. El equipo apuntó a ocho “farolas” cósmicas poderosas y distantes, llamadas cuásares (regiones alrededor de agujeros negros activos que emiten enormes cantidades de luz). Los astrónomos midieron cómo la luz emitida por el oxígeno y el gas de neón que orbitan cada uno de los agujeros negros de los quásares se deforma por la gravedad de una galaxia masiva en primer plano, que actúa como una lente de aumento.
Usando este método, el equipo descubrió grupos de materia oscura a lo largo de la línea de visión del telescopio hacia los cuásares, así como dentro y alrededor de las galaxias de lentes interpuestas. Las concentraciones de materia oscura detectadas por Hubble son 1/10 mil a 1/100 mil veces la masa del halo de materia oscura de la Vía Láctea. Es probable que muchas de estas pequeñas agrupaciones no contengan incluso galaxias pequeñas y, por lo tanto, hubieran sido imposibles de detectar mediante el método tradicional de búsqueda de estrellas incrustadas.
Los ocho cuásares y galaxias se alinearon con tanta precisión que el efecto de deformación, llamado lente gravitacional, produjo cuatro imágenes distorsionadas de cada cuásar. Tales imágenes cuádruples de los cuásares son raras debido a la alineación casi exacta necesaria entre la galaxia de primer plano y el cuásar de fondo. Sin embargo, los investigadores necesitaban las múltiples imágenes para realizar un análisis más detallado.
La presencia de agrupaciones de materia oscura altera el brillo aparente y la posición de cada imagen de cuásar distorsionada. Los astrónomos compararon estas mediciones con predicciones de cómo se verían las imágenes del cuásar sin la influencia de la materia oscura. Los investigadores utilizaron las mediciones para calcular las masas de las pequeñas concentraciones de materia oscura. Para analizar los datos, los investigadores también desarrollaron elaborados programas informáticos y técnicas intensivas de reconstrucción.
“Imagine que cada una de estas ocho galaxias es una lupa gigante”, explicó el miembro del equipo Daniel Gilman de UCLA. “Pequeños grupos de materia oscura actúan como pequeñas grietas en la lupa, alterando el brillo y la posición de las cuatro imágenes del cuásar en comparación con lo que esperaría ver si el vidrio fuera liso”.