Pharmaceuticals in the Blubber of Live Free-Swimming Common Bottlenose Dolphins (*Tursiops truncatus*)

Anya Isabelle Ocampos, Makayla A. Guinn, Justin Elliott, Christiana Wittmaack, Carrie Sinclair, Hussain Abdulla, Dara N. Orbach

PII: S2589-0042(24)02734-2

DOI: https://doi.org/10.1016/j.isci.2024.111507

Reference: ISCI 111507

To appear in: ISCIENCE

Received Date: 4 August 2024

Revised Date: 16 October 2024

Accepted Date: 27 November 2024

Please cite this article as: Ocampos, A.I., Guinn, M.A., Elliott, J., Wittmaack, C., Sinclair, C., Abdulla, H., Orbach, D.N., Pharmaceuticals in the Blubber of Live Free-Swimming Common Bottlenose Dolphins (*Tursiops truncatus*), *ISCIENCE* (2024), doi: https://doi.org/10.1016/j.isci.2024.111507.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Inc.

1	Pharmaceuticals in the Blubber of Live Free-Swimming Common Bottlenose Dolphins (Tursiops
2	truncatus)
3	Authors: Anya Isabelle Ocampos ¹ , Makayla A. Guinn ¹ , Justin Elliott ¹ , Christiana Wittmaack ² ,
4	Carrie Sinclair ³ , Hussain Abdulla ¹ , and Dara N. Orbach ^{1,4*}
5	
6	Affiliations:
7	¹ College of Science, Texas A&M University-Corpus Christi, Corpus Christi, 78412, TX, USA.
8	² Precision Toxicological Consultancy, Monroe, 28110, NC, USA.
9	³ National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center,
10	Mississippi Laboratories, Pascagoula, 39567, MS, USA.
11	
12	*Corresponding author. Email: <u>dnorbach@gmail.com</u>
13	
14	Summary
15	Pharmaceuticals prevent and treat diseases, yet inappropriate intake can result in harmful effects
16	including mortality. Contaminants have become recurrent public and wildlife health concerns.
17	Bioaccumulation of contaminants can occur throughout trophic levels of the food web. Dolphins
18	are apex predators often used as sentinel species to assess the health of marine ecosystems
19	because their lipid-rich blubber stores contaminants. We used blubber samples collected from
20	live free-swimming and post-mortem common bottlenose dolphins (Tursiops truncatus) in the
21	Gulf of Mexico to explore the presence of pharmaceutical contaminants in the marine ecosystem.
22	Targeted analysis of blubber using ultra-performance liquid chromatography coupled with
23	Orbitrap Fusion Tribrid mass spectrometry confirmed the presence of fentanyl, carisoprodol, or

meprobamate in 30 of the 89 dolphins assessed. We provide the first detection of human
pharmaceuticals stored in live free-swimming marine mammals, with important implications for
understanding ecosystem health.

27

28 Introduction

29 Pharmaceutical drugs are therapeutic substances used in human and veterinary medicine to diagnose, treat, cure, or prevent disease(s). Improper use of pharmaceuticals can cause harmful 30 effects including antibiotic resistance, addiction, overdose, and mortality^{1, 2}. For example, 31 improper use of veterinary pharmaceuticals in terrestrial mammals may result in hypersensitivity 32 reactions, gastric effects, hepatotoxicity, anaphylaxis, and mortality³. Pharmaceuticals and active 33 pharmaceutical ingredients (APIs) have become emerging micropollutants and are a growing 34 global concern^{4, 5}. The presence of pharmaceutical residues and APIs has been reported in 35 freshwater ecosystems, rivers, and oceans workldwide^{6,7}. The transfer of human pharmaceuticals 36 into aquatic environments often occur through insufficient treatment of wastewater effluent and 37 untreated discharge from pharmaceutical manufacturing facilities ^{7, 8, 9, 10}. Conventional treatment 38 methods implemented by wastewater treatment plants have pharmaceutical removal efficiencies 39 ranging from 23-54%¹¹. Residual veterinary pharmaceuticals in animal manure may enter aquatic 40 systems through runoff¹². Dietary medicinal doses are commonly directly lost from aquaculture 41 and shrimp farming to aquatic ecosystems^{8, 13}. 42

Pharmaceuticals are biologically active compounds that interact with specific
physiological pathways. Pharmaceuticals including hypocholesterolaemic drugs, beta blockers,
cardiovascular drugs, non-steroidal anti-inflammatory drugs, steroid hormone drugs, psychiatric

46	drugs, and antibiotics can bioaccumulate in marine invertebrates (e.g., crustaceans, mussels,
47	shrimp) and fish ^{14, 15, 16} ; most studies on trophic transfer in aquatic environments were conducted
48	in freshwater rivers or lakes lacking higher aquatic apex predators ^{7, 15, 17, 18} . The exposure of fish
49	to anxiolytic (oxazepam) and analgesic (carbamazepine, paracetamol)/ angiotensin II receptor
50	blocker (irbesartan)/ nonsteroidal anti-inflammatory (naproxen, diclofenac) drugs can result in
51	behavioral alterations and endocrine disruptions, respectively ^{19, 20, 21} . Humans can indirectly
52	consume many classes of pharmaceuticals from drinking water and food products ²² (e.g.,
53	contaminated fish and seafood), which may be a public health concern ²³ . Drug residue intake
54	from consuming edible animal tissues exposed to antimicrobial drugs (e.g., sulfamides,
55	lincosamides) may have short-term (e.g., allergic reactions) and long-term (e.g., mutagenic,
56	carcinogenic, and teratogenic) effects on human health ²⁴ . Reports of human pharmaceuticals
57	stored in free-swimming apex marine predators are limited to a few studies ^{25, 26, 27} . One
58	population of bull sharks (Carcharhinus leucas) inhabiting a wastewater-impacted river had
59	detectable human contraceptive and anti-depressant metabolites in plasma ²⁶ . Recently, muscle
60	relaxants or migraine medications were detected in low concentrations (<1 ng/g) in the livers and
61	antihistamines in the blubber of seven post-mortem dolphins, highlighting that detection is
62	dependent on the tissue matrix and properties of the medications (e.g., lipophilic) ²⁷ .
63	Antidepressants were reported in the feces of captive killer whales (Orcinus orca), although it is
64	not clear if the animals were treated with the pharmaceuticals and there was no evidence of drug
65	storage ²⁸ .

Common bottlenose dolphins (*Tursiops truncatus;* hereafter 'dolphins') are susceptible to
 bioaccumulation of lipophilic compounds from pollutants and are effective bioindicators of
 ecosystem health in contaminant research; common bottlenose dolphins have lipid-rich blubber

that can store contaminants and be sampled relatively minimally invasively, high trophic level 69 positions in food webs, long lifespans, and relatively fast metabolisms ^{29, 30, 31}. It remains unclear 70 what are the chronic effects of pharmaceuticals in dolphins. We used liquid chromatography 71 coupled with Orbitrap Fusion Tribrid mass spectrometry (LC-OT-MS) to evaluate the presence 72 and concentrations of human pharmaceuticals stored in the blubber of free-swimming, in vivo, 73 74 and post-mortem dolphins off three locations in the Gulf of Mexico (GoM). Level 1 confidence was achieved. Other matrices known to accumulate pharmaceuticals in vertebrates were not 75 sampled as that would require the subjects to be post-mortem (e.g., liver, brain, kidney tissues) or 76 77 entail highly invasive and logistically constraining collection techniques (e.g., plasma, urine) that

78 would substantially reduce the sample size.

Fentanyl (an opioid analgesic for severe pain that is 100x more potent than morphine³²), 79 carisoprodol (a muscle relaxant for painful musculoskeletal injuries), and meprobamate (a 80 sedative and anxiolytic drug for treating anxiety disorders) were selected based on an untargeted 81 analysis (Methods S1). Fentanyl targets the brain and binds to opioid receptors. Upon ingestion, 82 fentanyl passes through the stomach and intestine where it can subsequently be defecated or 83 transferred to the liver and metabolized by CYP3A4 (CYP3A29 is the homologue in cetacean 84 skin³³) and excreted in urine. Inhalation and dermal contact with fentanyl reach the brain, fat, 85 kidney, and liver by blood transport. The half-life of fentanyl is 3-7 hr³⁴. Carisoprodol and 86 meprobamate are metabolized in the liver by the cytochrome P450 system^{35, 36}. The half-life of 87 carisoprodol is 2 hr while its metabolite meprobamate has a half-life of 10 hr³⁷. The metabolism 88 of fentanyl, carisoprodol, and meprobamate have not been assessed in cetaceans to our 89 knowledge. 90

91

92 **Results**

100 and LOD

A total of 89 blubber samples were analyzed from different dolphins (83 biopsy collected, 6 post-94 mortem) inhabiting Redfish Bay, TX (RB, n = 46; Fig 1a), Upper Laguna Madre, TX (ULM, n = 95 13, Fig 1c), and Mississippi Sound, MS (MS, n = 30; Fig 1b) in the GoM. Of these 89 tissue 96 samples, 63% were collected from male (n = 56) and 37% from female dolphins (n = 33). 97 Samples from post-mortem animals were collected from five dolphins around Corpus Christi 98 Bay, TX (adjacent to RB), and one dolphin in Baffin Bay, TX (near the connection to ULM). The 99 limit of detection (LOD) for fentanyl, carisoprodol, and meprobamate were 0.07 ng/mL (ppb), 100 0.30 ng/mL, and 2.00 ng/mL, respectively. The limit of quantification (LOQ) for fentanyl, 101 carisoprodol, and meprobamate were 0.30 ng/mL, 0.50 ng/mL, and 10 ng/mL respectively. 102

103

104 *Pharmaceutical detection*

The identification of pharmaceutical compounds was confirmed based on the Orbitrap MS1 data 105 of their adducts ([M+H]+ and [M+Na]+) with a mass error of less than 5 ppm, along with isotope 106 pattern matching and a retention time deviation within ± 0.4 minutes of the corresponding 107 standards. The pharmaceutical compounds were detected in the blubber of 30 dolphins (Table 1). 108 For further details, please refer to the standards preparation and instrumental analysis sections. 109 However, quantification was unattainable as no samples reached LOQ for any analyte. Fentanyl 110 was found in 18 dolphins sampled by remote biopsy across the study sites and in all six post-111 112 mortem dolphins (27% of blubber samples; Table 1; Fig. 2; Supplemental Information Figures S1 and S2). Carisoprodol was detected in five dolphins (5.6% of blubber samples) while 113

114 meprobamate was detected in one dolphin (1.1% of blubber samples; Table 1; Supplemental

115 Information Figures S1 and S2). One targeted pharmaceutical was detected in each of the

116 samples where detections occurred.

117

118 Sex and temporal patterns

The distribution of pharmaceuticals between the sexes mirrored the demographics, with 63% of
detections from males and 37% from females. RB had a high detection of pharmaceuticals
relative to biopsy samples collected (RB: 49% biopsy samples, 62% pharmaceutical detections;
ULM: 15% biopsy samples, 17% pharmaceutical detections; MS: 36% biopsy samples, 21%
pharmaceuticals detected). Pharmaceuticals were found in 12 historic blubber samples from MS
(2013) comprising 40% of total pharmaceutical detections.

125

126 Discussion

The data support that narcotic (opiate) analgesics and skeletal muscle relaxants can reach apex 127 128 marine predators. The low (non-quantifiable) concentrations of opiate analysis and muscle relaxants in dolphins in both Texas and Mississippi waters reinforce the need for large-scale 129 assessments across trophic levels, water columns, and ecosystems globally; such widespread 130 investigations will help ascertain the severity and source(s) of contamination²⁵. We recommend 131 initial efforts in areas with dense human populations and prominent aquaculture/fishing 132 industries where humans may be most at risk. As 40% of all detected pharmaceuticals (n = 12) 133 were found in the historical samples, pharmaceutical pollution may be a long-standing issue that 134

135	has been largely overlooked; assessment of historic water and tissue samples across marine taxa
136	for pharmaceutical detection will provide insights into the duration of the issue.
137	Bioaccumulation of fentanyl through the consumption of contaminated prey cannot be
138	discredited as the log Kow is 4.05 ³⁸ , bioaccumulation of carisoprodol is unlikely as the estimated
139	log Kow is 2.36^{39} , and meprobamate does not bioaccumulate as the log Kow is 0.07^{40} . It is also
140	possible that the dolphins were recently exposed to the pharmaceuticals. Monitoring
141	concentrations of all three pharmaceuticals within the water column may help pinpoint sources
142	of exposure. Fentanyl, carisoprodol, and meprobamate can cross the placental barrier with
143	varying effects of toxicity ^{41, 42} . Offloading of fentanyl, carisoprodol, and meprobamate through
144	lactational transfer occurs in some mammalian species ^{43, 44} , although this has not yet been
145	explored in cetaceans.

Detection of narcotic (opiate) analgesics and skeletal muscle relaxants was overall higher 146 in dolphins inhabiting RB and ULM compared to MS. In the years immediately following the 147 2010 Deepwater Horizon oil spill (during which biopsy surveys were conducted), dolphins 148 inhabiting Mississippi but not Texas experienced increased stranding rates⁴⁵. However, dolphins 149 inhabiting South Texas were deemed priority stocks by the National Oceanic and Atmospheric 150 Administration due to High Cumulative Threat scores from compounded exposure to oil and gas 151 pollution, vessel traffic, dredging and construction, and algal blooms⁴⁶. Chronic exposure to 152 153 multiple stressors can compromise the immune integrity of cetaceans, rendering them particularly susceptible to infection, reproductive failure, and mortality⁴⁷. There is a need to 154 proactively monitor contaminants of emerging concern (CECs) to inform mitigation efforts, 155 156 particularly in regions with chronic and diverse stressors to marine biota.

Assessing the potential source(s) of exposure of the dolphins to narcotic (opiate) 157 analgesics and skeletal muscle relaxants was beyond the scope of this study. However, our 158 159 untargeted analysis was conducted on a dolphin found within one year of the largest liquid fentanyl drug bust in United States history in the adjacent county⁴⁸, and fentanyl is stable in the 160 ocean. The presence of human pharmaceuticals in free-swimming marine species is not usually 161 162 assessed, and when tested, a targeted approach is often used due to the impracticality of testing all pharmaceutical classes^{20, 49}. Initial non-targeted analyses of contaminants, especially in apex 163 marine predators, allow for a broad assessment of the health of marine environments. Non-164 targeted studies may aid regulatory authorities in identifying and prioritizing which CECs to 165 monitor and mitigate. However, non-targeted approaches should be followed by targeted 166 analyses that verify CEC presence and quantify concentrations to enhance understandings of 167 marine ecosystem health. 168

The detection of fentanyl in substantially more blubber samples than carisoprodol and 169 170 meprobamate is expected as fentanyl readily distributes to fat. As carisoprodol and meprobamate have low bioconcentration factors in lipids, their detection in blubber (but not in blank samples) 171 underscores the research potential for advanced mass spectrometry. It is unlikely (although 172 173 potentially possible) that the detected analytes were in plasma within blubber as we did not use bloody biopsy samples. Concentrations below LD50 suggest that acute toxicity is not of concern. 174 However, chronic exposure and cumulative effects are unknown in marine mammals. Sublethal 175 effects from chronic exposure to some pharmaceuticals can occur in fish, crustaceans, and 176 arthropods⁵⁰. Fentanyl was detected in all post-mortem dolphins in this study, and orphenadrine, 177 pizotifen, or promethazine were detected in 70% of post-mortem dolphins in a different study²⁷, 178 possibly indicating some comorbidities. While toxicological studies on marine mammals are 179

180 limited due to conservation concerns and policies, *in vitro* and *in silico* studies may enable risk

assessments of pharmaceuticals and other pollutants⁵¹, and assessments of synergistic effects.

182

183 Resource Availability

Lead Contact: Requests for further information and resources should be directed to and will be
fulfilled by the lead contact, Dara Orbach (dnorbach@gmail.com).

186 Materials Availability: This study did not generate unique reagents.

- 187 Data and Code Availability: Data reported in this paper will be shared by the lead contact upon
- 188 request. This paper does not report original code. Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.

190

191 Limitations of the study

No sample reached LOQ for any analyte. Without quantification of pharmaceutical 192 concentrations, the risk assessment to the dolphins and ecosystem is curtailed. However, the 193 presence of carisoprodol and meprobamate in any blubber sample despite their low accumulation 194 in lipids and brief half lives in mammals underscores the value of detection. Future research that 195 196 quantifies pharmaceutical concentrations will be of value. A mass spectrometer capable of detecting concentration as low as femtomolar levels might enable the quantification of the low 197 concentrations that occur in dolphins. Despite matches in retention time and m/z, we cannot 198 definitively exclude the possibility of coeluting isobaric or isomeric metabolites. However, we 199 are confident in our quality control and verification process as we had high mass accuracy 200

201 combined with retention time, used labeled standards, repeatedly tested blanks, and used MS2
202 matching with our in-house database.

203 Remote biopsy sampling of blubber provides a way to assess thresholds of survival in 204 marine mammals before possible comorbidities and cascading ecological effects occur. Blubber samples were used as a biological matrix because blubber can be collected from live, free-205 206 swimming dolphins by remote biopsy, which is non-lethal and substantially less invasive, costly, and logistically prohibitive compared to the live animal captures needed to obtain plasma and 207 208 urine or post-mortem animals needed to obtain liver, kidney, and brain tissues. We did not have access to non-blubber tissue matrices from the post-mortem dolphins sampled. Sampling live-209 stranded animals that are subsequently euthanized may add insights of exposure levels if plasma, 210 liver, kidney, or brain tissues can be assessed. 211

Because meprobamate is a metabolite of carisoprodol, it is unclear whether the dolphin in 212 our study had metabolized carisoprodol or had been directly exposed to it. Only three 213 pharmaceuticals were tested and were selected based on results of a non-targeted analysis. Each 214 pharmaceutical assessed was present in at least one dolphin, but no dolphin had multiple 215 216 pharmaceuticals detected. Testing additional pharmaceuticals could yield more CECs per dolphin. A statistical analysis was not possible due to the low number of blubber samples 217 obtained and lower number of samples with pharmaceuticals detected. It was also not possible to 218 219 control for different sampling years and unequal sampling efforts across study sites, which limited the scope of comparisons between locations. 220

221

222 Acknowledgements

223	We thank field data	collection assistar	nts: M. Applega	te, K. Barry	, E. Cano, A.	. Martinez, S.
				/ _	, ,	

- 224 McBride, M. Foster, W. McGlaun, E. Mills, T. Ninke, J. Oster, L. Punjabi, J. Rich, E. Ronje, K.
- 225 Simpson, J. Stevenot, A. Stiles, C. Thompson, J. Wicker, and A. Wilson. We thank M. Srinivasan
- and J. Litz from NOAA Southeast Fisheries Science Center, A. Moors from the National Institute
- 227 for Standards and Technology, C. Ullmer from the Texas State Aquarium, and the Texas Marine
- 228 Mammal Stranding Network. We thank the anonymous reviewers who provided helpful
- 229 feedback. The scientific results and conclusions, as well as any views or opinions expressed
- 230 herein, are those of the author(s) and do not necessarily reflect those of NOAA or the
- 231 Department of Commerce. Funding was provided by Texas Parks and Wildlife Department (CA-
- 232 0000891), TAMU-CC Center for Coastal Studies, Society of Integrative and Comparative
- 233 Biology, and Frazier Family Foundation.
- 234

235 Author Contributions

DNO, MAG, HA, and CW conceived the idea. CS, MAG, and DNO collected the data. AIO and
MAG prepared the samples. AIO, MAG, HA, and JE analyzed the data. DNO and AIO wrote the
manuscript with edits from MAG, JE, CS, CW, and HA.

239

240 Declaration of Interests

241 The authors declare no competing interests.

242

243 Main Figure Titles and Legends

247 Upper Laguna Madre during 2022, and in Mississippi Sound during 2013. Post-mortem dolphin

tissue samples were collected from the Redfish Bay and Upper Laguna Madre vicinities in 2022-

249 2023.

250

Fig. 2: Mass spectrometer MS¹ chromatogram showing the overlaying of fentanyl peaks
[M+Na]⁺ detected in 24 dolphin blubber samples with fentanyl present. Peaks represent the
intensity signal of the analyte when detected by the instrument.

254

262

255 Main Tables

Table 1: Number of dolphins with detected pharmaceuticals in blubber samples across three
study sites. The top numbers in each cell denote samples collected by remote biopsy of live (L)
dolphins and the bottom numbers denote samples collected from post-mortem (PM) dolphins.
The ratio of females to males are presented in brackets. Remote biopsy samples were collected in
Redfish Bay from 2012-2014 and 2022, in Upper Laguna Madre during 2022, and in Mississippi
Sound during 2013. Post-mortem dolphin tissue samples were collected from the Redfish Bay

and Upper Laguna Madre vicinities in 2022-2023.

Pharmaceutical	Redfish Bay, TX	Upper Laguna Madre, TX	Mississippi Sound, MS
L	41 (9:32)	12 (3:9)	30 (18:12)
PM	5 (3:2)	1 (0:1)	-

Fentanyl L	12 (3:9)	4 (1:3)	2 (2:0)
РМ	5(3:2)	1 (0:1)	-
Carisoprodol L	2 (0:2)	-	3 (2:1)
PM	-	-	-
Meprobamate L	1 (0:1)	-	-
PM	-	-	-

263

264 STAR Methods

265 METHOD DETAILS

Study sites: The Redfish Bay (RB) system, Texas, consists of dolphins inhabiting the inshore 266 waters of Port Aransas, Texas, and extends to Aransas Bay, Texas. The survey area is 267 approximately 260 km² with an average water depth of 4.3 m⁴⁶. RB has one point of outflow to 268 the Gulf of Mexico (GoM) near the town of Port Aransas. The RB system is connected to Corpus 269 Christi Bay in the southwest⁴⁶. The 2022 population abundance estimate of dolphins inhabiting 270 RB is 1,104 dolphins (unpublished data). Peak abundance occurs in winter months and many 271 dolphins are year-round residents⁵². Corpus Christi Bay connects to Laguna Madre (LM) through 272 the narrow enclosed Intercoastal Waterway that spans 443 km in length and 3-6 km in width, 273 with an average water depth of 1 m⁴⁶. The Upper Laguna Madre (ULM) is the northern part of 274 the LM system that extends from Corpus Christi Bay in the north to the land cut in the south, 275 spanning 80 km. ULM connects to Baffin Bay in the west and there is no outflow of ULM to the 276 GoM. The survey area of ULM is approximately 46 km². Little research has been conducted on 277 the dolphins inhabiting ULM^{46, 53}. At least 408 different dolphins have been photo-documented 278 between 2019-2022 (unpublished data). The Mississippi Sound (MS) is located off the 279 ⁴ Lead Contact

by the barrier islands of the Gulf Islands National Seashore to the south for a total area of approximately 4,792 km^{2 54, 55}. MS varies in width from 7.2-22.5 km and has an average water depth of 3 m⁵⁴. The surveyed area is approximately 643 km². Dolphins inhabited MS exhibit seasonal spatial distributions, with peak densities during the summer^{55, 56, 57}. The population abundance estimate is 1,265 dolphins in MS⁵⁸.

286

280

287

Remote Biopsy Sampling: Research was conducted under NOAA NMFS permits 21938, 779-288 1633, and 14450, and Texas A&M University-Corpus Christi's Institutional Animal Care and 289 Use Committee (IACUC) permit 2021-10-031. Blubber samples were obtained from distinct 290 stocks of dolphins inhabiting Redfish Bay (RB) and Upper Laguna Madre (ULM), Texas, and 291 Mississippi Sound (MS), Mississippi (Fig. 1). Remote biopsy surveys were conducted in RB 292 from 2012-2014 and 2022, in ULM during 2022, and in MS during 2013. Historic samples from 293 2012-2014 were used to explore the prevalence of pharmaceuticals over time. Research vessels 294 included a 6.4 m Sea Fox with 200 HP motor, 7 m Boston Whaler Outrage with twin 150 HP 295 motors, and 6 m rigid hull inflatable Inmar with 90 HP motor. Biopsy samples of dolphin blubber 296 were collected using a crossbow (Barnett Panzer V, 68 kg draw weight) and custom-designed 297 floating darts (Ceta-Dart) that rebound upon penetration of blubber⁵⁹. A 7x25 mm or 10x25 mm 298 stainless steel dart sampling tip held the tissue sample after penetration⁵⁸. In between uses, tools 299 including sampling tips were washed with antibacterial soap, rinsed, soaked in a 10% bleach 300 301 solution for 10 minutes, rinsed again in deionized water, and autoclaved for 90 mins at 121 °C (15 psi). Groups with a neonate or calf < 1 year were avoided per federal permit regulations. 302

303	Initial GPS coordinates were recorded upon approaching dolphin groups. Samples were obtained
304	from the flank of the dolphin, 3-4 inches below the dorsal fin and above the dolphin's midline.
305	The sampling distance was typically 3-7 m from the target animal ⁵⁹ .
306	Blubber samples were immediately retrieved from the darts and processed on ice using a
307	cutting board covered with a sterile Teflon sheet. Sterilized scalpels and forceps were used to
308	separate the blubber from skin. Samples were stored in vials sterilized by the National Institute
309	of Standards and Technology in a liquid nitrogen vapor shipper until return to land and
310	transferred to a -80°C freezer until processing. Metadata including environmental parameters,
311	dolphin group composition, and biopsy data were recorded. Additional blubber samples were
312	collected opportunistically from post-mortem dolphins (mostly fresh dead) that stranded in 2022-
313	2023 in or near Redfish Bay and Upper Laguna Madre and were stored in -20°C freezers.

314

315 Standards Preparation:

All glassware was initially soaked in a 5% Tergazyme solution overnight, rinsed with tap water, washed with deionized (DI) water, soaked in 5% HCl for 12 hours, followed by further rinsing with DI water and Milli-Q ultrapure water. Glassware was subsequently oven-dried and combusted at 450°C for 12 hours. Immediately before use, glassware was rinsed with LC-MS Optima-grade acetonitrile (ACN). Procedure blanks (n = 3) underwent the same extraction processes but without the addition of the test blubber samples to ensure no contamination.

A combination of targeted and non-targeted approaches were employed⁶⁰ to identify which pharmaceuticals to assess (Methods S1). Both non-isotopically labeled pharmaceutical standards (fentanyl, carisoprodol, meprobamate, Sigma-Aldrich) and isotopically labeled

325	pharmaceutical standards (Fentanyl- $^{13}C_6$ with purity 99.5%, with 0.00% $^{13}C_0$ vs $^{13}C_6$, 3.84% $^{13}C_5$,
326	0.09% ¹³ C ₄ and 96.08% ¹³ C ₆ ; Carisopropdol- ¹³ C ₃ with purity 99.5%, with 0.00% of ¹³ C ₀ vs ¹³ C ₃ ,
327	2.58%, ${}^{13}C_2$ 97.43%; Meprobamate- ${}^{13}C_3$ with purity >98.7%, with 0.00% ${}^{13}C_0$ vs ${}^{13}C_3$, 2.89%
328	$^{13}C_2$, 0.01% $^{13}C_1$ and 97.10% $^{13}C_3$) were used. The labeled standards were prepared in LCMS
329	Optima-grade acetonitrile (ACN) at an initial concentration of 1 mg/mL (1,000 ppm). These
330	standards were then combined to form a working solution with a final concentration of 1 ppm.
331	The isotopically labeled pharmaceutical standards were used solely to validate the calibration
332	curve and for spiking in the precision and recovery study. The isotopically labeled
333	pharmaceutical standards were not spiked during sample analysis to prevent potential false
334	positive detections from residual non-isotopically labeled standards. Successive serial dilutions
335	were performed from the working solution to generate a calibration curve with concentrations
336	ranging from 0.001 to 500 ng/mL. For the isotopically labeled standards, an additional dilution
337	with a final concentration of 20 ng/mL was prepared for spiking test samples during the precision
338	and recovery study (Methods S2).
339	The results of the precision and recovery study informed the decision to apply the same
340	homogenization and pharmaceutical extraction method to all blubber samples, using a fixed mass
341	of 150 mg blubber in ACN (Methods S2). Following extraction, all samples were reconstituted in
342	150 μ L of ACN. Additionally, a blank sample of ACN was treated and analyzed multiple times
343	during the sequence to ensure the accuracy of the result. Blubber homogenization and
344	pharmaceutical extraction used combined techniques ^{62, 63} .

345

346 Instrumental Analysis:

A Thermo Fisher Vanquish UHPLC system coupled with an ACQUITY UPLC BEH C18 347 reverse-phase column (130 Å, 1.7 µm, 2.1 mm x 150 mm) and an Orbitrap Fusion Tribrid mass 348 349 spectrometer were used for the analysis. The mass spectrometer was operated with the Orbitrap as a high-resolution mass analyzer, the quadrupole as a mass filter, and the ion trap for 350 fragmentation spectra analysis. Pharmaceutical concentrations were quantified by running 351 352 analytes extracted from blubber samples alongside non-labeled external standards. To avoid carryover between samples or from standards to samples in the LC-Orbitrap MS, the column is 353 354 placed in 100% ACN for 3 min at the end of each analysis followed by a 7 min re-equilibration between runs to remove any residual carryover. We ran analysis blanks (ACN) at the beginning 355 of each batch, after the calibration curve (twice), and after every 10 samples to check for 356 potential carryover. Additionally, we analyzed procedure blanks (n=3) as samples, which serve 357 as a control and consist of vials subjected to the same steps of the analytical procedure, including 358 sample preparation, extraction, and analysis, but without the addition of blubber. In all blanks 359 (both analysis and procedure), none of the targeted pharmaceutical compounds were detected. 360 361

Chromatographic Conditions: The mobile phases consisted of Milli-Q (MQ) ultra-pure water
with 1% formic acid (A) and acetonitrile (ACN) with 1% formic acid (B). The chromatographic
separation was performed at a flow rate of 0.200 mL/min with the total run lasting 31 min with a
7 min re-equilibration and the following gradient: 0 - 2 min hold at 5% B, ramp to 65% B for 18
min, ramp to 100% B for 1 min, and hold at 100% B for 3 min. Samples were injected at a
volume of 5 μL.

368

Mass Spectrometry Conditions: UHPLC element was ionized using heated electrospray 369 ionization (H-ESI) at 3,500 volts in positive ion mode. The ion transfer tube temperature was set 370 to 300°C and the vaporization temperature to 225°C. Gas flow rates were set at 35 for sheath gas, 371 7 for auxiliary gas, and 0 for sweep gas. The Orbitrap operated at 60,000 FWHM resolution (at 372 200 m/z), with a mass range of 85-700 m/z and an RF lens setting of 40%. 373 374 For each Orbitrap acquisition cycle, we prioritized acquiring MS/MS fragmentation spectra of three pharmaceuticals using the ion trap, focusing on their specific retention times. 375 Secondary priority was assigned to two additional MS/MS scans, performed using a data-376 dependent acquisition (DDA) approach with a quadrupole isolation window of 0.7 m/z. The first 377 MS/MS scan employed collision-induced dissociation (CID) with an automatic gain control 378 (AGC) target of 3.0×10^4 and a maximum injection time of 50 ms. The second MS/MS scan 379 used higher-energy collisional dissociation (HCD), with collision energy optimized through real-380 time assisted optimization at 15, 30, and 45 eV, and an AGC target of 1.0×10^4 . By incorporating 381 382 reference standards to confirm retention times and ensuring high mass accuracy, we confidently assign our identifications to Level 1⁶¹. 383

384

385 QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis and Quantification: TraceFinder 5.1 (Thermo Scientific) was used to determine analyte peak areas and retention times for the [M+H]⁺ and [M+Na]⁺ adducts. Concentrations were calculated by applying the peak areas to the analytes' standard calibration curves. Percent recovery and precision (standard deviation) were determined for each analyte.

390

391	Limit of Detection (LOD) and Limit of Quantification (LOQ): The LOD was established by
392	performing 9 replicate injections, ensuring a signal-to-noise (S/N) ratio > 3, a mass error < 5
393	ppm, isotope patterns, and a retention time deviation within ± 0.4 min of the corresponding
394	standard. Multiple adducts $([M+H]^+ \text{ and } [M+Na]^+)$ were evaluated, with the lowest LOD value
395	selected.
396	For LOQ, a S/N ratio > 10 was required, along with MS/MS fragmentation spectra
397	collected in the ion trap. LOQ determination also required a mass error < 5 ppm and retention
398	time detection within \pm 0.4 min of the pharmaceutical standard and a minimum of three matching
399	fragments were required for confirmation.
400	
401	Supplemental Information
402	Methods S1, Methods S2, Tables S1-S2, Figures S1-S2.
403	
404	References
405	1. Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and
405 406	1. Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2) , 2000163 (2021).
405 406 407	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163
405 406 407 408	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163 Jones, C. M., Mack, K. A., and Paulozzi, L. J. Pharmaceutical overdose deaths, United States,
405 406 407 408 409	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163 Jones, C. M., Mack, K. A., and Paulozzi, L. J. Pharmaceutical overdose deaths, United States, 2010. <i>JAMA</i> 309(7), 657–659 (2013). https://doi.org/10.1001/jama.2013.272
405 406 407 408 409 410	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163 Jones, C. M., Mack, K. A., and Paulozzi, L. J. Pharmaceutical overdose deaths, United States, 2010. <i>JAMA</i> 309(7), 657–659 (2013). https://doi.org/10.1001/jama.2013.272 Woodward, K. N. Adverse effects of veterinary pharmaceutical products in animals.
405 406 407 408 409 410 411	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163 Jones, C. M., Mack, K. A., and Paulozzi, L. J. Pharmaceutical overdose deaths, United States, 2010. <i>JAMA</i> 309(7), 657–659 (2013). https://doi.org/10.1001/jama.2013.272 Woodward, K. N. Adverse effects of veterinary pharmaceutical products in animals. In Woodward, K.N. (Ed.) <i>Veterinary pharmacovigilance: Adverse reaction to veterinary</i>
405 406 407 408 409 410 411 412	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163 Jones, C. M., Mack, K. A., and Paulozzi, L. J. Pharmaceutical overdose deaths, United States, 2010. <i>JAMA</i> 309(7), 657–659 (2013). https://doi.org/10.1001/jama.2013.272 Woodward, K. N. Adverse effects of veterinary pharmaceutical products in animals. In Woodward, K.N. (Ed.) <i>Veterinary pharmacovigilance: Adverse reaction to veterinary medicinal products</i> (pp. 393–421). Chichester, United Kingdom: Wiley Blackwell.
405 406 407 408 409 410 411 412 413	 Blaser, M. J., Melby, M. K., Lock, M., and Nichter, M. Accounting for variation in and overuse of antibiotics among humans. <i>BioEssays</i> 43(2), 2000163 (2021). https://doi.org/10.1002/bies.202000163 Jones, C. M., Mack, K. A., and Paulozzi, L. J. Pharmaceutical overdose deaths, United States, 2010. <i>JAMA</i> 309(7), 657–659 (2013). https://doi.org/10.1001/jama.2013.272 Woodward, K. N. Adverse effects of veterinary pharmaceutical products in animals. In Woodward, K.N. (Ed.) <i>Veterinary pharmacovigilance: Adverse reaction to veterinary medicinal products</i> (pp. 393–421). Chichester, United Kingdom: Wiley Blackwell. (2009). https://doi.org/10.1002/9781444322958

414	4. Chavoshani, A., Hashemi, M., Amin, M. M., and Ameta, S. C. Pharmaceuticals as emerging
415	micropollutants in aquatic environments. In Munro, L. (Ed.) Micropollutants and
416	Challenges: Emerging in the Aquatic Environments and Treatment Processes pp. 35–90.
417	Amsterdam, Netherlands: Elsevier (2020).
418	5. aus der Beek, T., Weber, FA., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., and Küster, A.
419	Pharmaceuticals in the environment-global occurrences and perspectives. Environ. Toxic.
420	Chem. 35(4), 823-835 (2016). https://doi.org/10.1002/etc.3339
421	6. Zandaryaa, S., and Frank-Kamenetsky, D. A source-to-sea approach to emerging pollutants in
422	freshwater and oceans: Pharmaceuticals in the Baltic Sea region. In Weinberg, J., Qinhua,
423	F., Zandaryaa, S., Leslie, G., and Nickum, J. E. Source-to-Sea Management pp. 60-75.
424	London, U.K.: Routledge (2021).
425	7. Wilkinson, J. L. et al. Pharmaceutical pollution of the world's rivers. Proc. Natl. Acad. Sci.
426	119(8), 1-10 (2022). https://doi.org/10.1073/pnas.2113947119
427	8. Gaw, S., Thomas, K. V., and Hutchinson, T. H. Sources, impacts and trends of pharmaceuticals
428	in the marine and coastal environment. Phil. Trans. R. Soc. B. 369(1656), 20130572
429	(2014). https://doi.org/10.1098/rstb.2013.0572
430	9. Kleywegt, S., Payne, M., Ng, F., and Fletcher, T. Environmental loadings of active
431	pharmaceutical ingredients from manufacturing facilities in Canada. Sci. Tot. Environ. 46,
432	257-264 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.240
433	10. Khasawneh, O.F.S., and Palaniandy, P. Occurrence and removal of pharmaceuticals in
434	wastewater treatment plants. Proc. Safe. Environ. Protect. 150, 532-556M (2021).
435	https://doi.org/10.1016/j.psep.2021.04.045

100 11. Officially and fight and fight of belocide pharmaceutours in hospital	436	11. Ulvi, A., A	Aydin, S.,	and Aydin,	M.E. Fate	of selected	pharmaceuticals in	n hospital and
---	-----	-----------------	------------	------------	-----------	-------------	--------------------	----------------

- municipal wastewater effluent: Occurrence, removal, and environmental risk assessment. 437
- Environ. Sci. Pollut. Res. 29, 75609-75625 (2022). https://doi.org/10.1007/s11356-022-438
- 21131-y 439

444

- 12. Kümmerer, K. Pharmaceuticals in the environment. Ann. Rev. Environ. Resour. 35(1), 57-75 440
- 441 (2010). https://doi.org/10.1146/annurev-environ-052809-161223
- 13. Le, T. X., Munekage, Y., and Kato, S.-I. Antibiotic resistance in bacteria from shrimp farming 442 in mangrove areas. Sci. Tot. Environ. 349, 95-105 (2005). 443
- https://doi.org/10.1016/j.scitotenv.2005.01.006
- 14. Fabri, E., and Franzellitti, S. HuEman pharmaceuticals in the marine environment: Focus on 445
- exposure and biological effects in animal species. Environ. Toxicol. Chem. 2016(35), 446
- 799-812 (2016). https://doi.org/10.1002/etc.3131 447
- 15. Mezzelani, M., Gorbi, S., and Regoli, F. Pharmaceuticals in the aquatic environments: 448
- Evidence of emerged threat and future challenges for marine organisms. Mar. Environ. 449

Res. 140, 41-60 (2018). https://doi.org/10.1016/j.marenvres.2018.05.001 450

- 16. Ruan, Y., Lin, H., Zhang, X., Wu, R., Zhang, K., Leung, K.M., Lam, J.C., and Lam, P.K. 451
- 452 Enantiomer-specific bioaccumulation and distribution of chiral pharmaceuticals in a
- subtropical marine food web. J. Haz. Mat. 394, 122589 (2020). 453
- https://doi.org/10.1016/j.jhazmat.2020.122589 454
- 455 17. Ruhí, A., Acuña, V., Barceló, D., Huerta, B., Mor, J.R., Rodríguez-Mozaz, S., and Sabater, S.
- Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors 456
- in a Mediterranean river food web. Sci. Tot. Environ. 540, 250-259 (2016). 457
- 458 https://doi.org/10.1016/j.scitotenv.2015.06.009

459	18. Xie, Z., Lu, G., Yan, Z., Liu, J., Wang, P., and Wang, Y. Bioaccumulation and trophic transfer
460	of pharmaceuticals in food webs from a large freshwater lake. Environ. Poll. 222, 356-
461	366 (2017). https://doi.org/10.1016/j.envpol.2016.12.026
462	19. Brodin, T., Piovano, S., Fick, J., Klaminder, J., Heynen, M. and Jonsson, M. Ecological
463	effects of pharmaceuticals in aquatic systems-impacts through behavioural alterations.
464	Phil. Trans. R. Soc. B. 369(1656), 20130580 (2014).
465	https://doi.org/10.1098/rstb.2013.0580
466	20. Schmitz, M., Beghin, M., Mandiki, S. N., Nott, K., Gillet, M., Ronkart, S., Robert, C.,
467	Baekelandt, S., and Kestemont, P. Environmentally-relevant mixture of pharmaceutical
468	drugs stimulates sex-steroid hormone production and modulates the expression of
469	candidate genes in the ovary of juvenile female rainbow trout. Aqua. Toxic. 205, 89-99
470	(2018). https://doi.org/10.1016/j.aquatox.2018.10.006
471	21. Biswas, C., Maity, S., Adhikari, M., Chatterjee, A., Guchhait, R., and Pramanick, K.
472	Pharmaceuticals in the aquatic environment and their endocrine disruptive effects in fish.
473	Proc. Zool. Soc. 74(4), 507-522 (2021). https://doi.org/10.1007/s12595-021-00402-5
474	22. Collier, R. Swallowing the pharmaceutical waters. Can. Med. Assoc. J. 184(2), 163-164.
475	(2012). https://doi.org/10.1503/cmaj.109-4086
476	23. Martinez-Morcillo, S., Rodríguez-Gil, J.L., Fernández-Rubio, J., Rodriguez-Mozaz, S.,
477	Míguez-Santiyán, M.P., Valdes, M.E., Barceló, D., and Valcárcel, Y. Presence of
478	pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk
479	assessment for human health: Results from a case study in North-Western Spain. Intl. J.
480	Hyg. Environ. Health 223(1),10-21 (2020). https://doi.org/101016/j.ijheh.2019.10.011

481	24. Ture, M., Fentie, T., and Regassa, B. Veterinary drug residue: The risk, public health
482	significance and its management. Vet. Sci. J. 13(2), 1-11 (2019).
483	25. Gkotsis, G., et al. Assessment of contaminants of emerging concern in European apex
484	predators and their prey by LC-QToF MS wide-scope target analysis. Environ. Intl. 170,
485	107623 (2022). https://doi.org/10.1016/j.envint.2022.107623
486	26. Gelsleichter, J., and Szabo, N. J. Uptake of human pharmaceuticals in bull sharks
487	(Carcharhinus leucas) inhabiting a wastewater-impacted river. Sci. Tot. Environ. 456,
488	196–201 (2013). https://doi.org/10.1016/j.scitotenv.2013.03.078
489	27. Alzola-Andres, M., Cerveny, D., Domingo-Echaburu, S., Lekube, X., Ruiz-Sancho, L.,
490	Brodin, T., Orive, G., and Lertxundi, U. Pharmaceutical residues in stranded dolphins in
491	the Bay of Biscay. Sci. Tot. Environ. 912, 168570 (2024).
492	https://doi.org/10.1016/j.scitotenv.2023.168570
493	28. Ross, A. R., Liao, X., and Brown, T. M. Simultaneous determination of steroid hormones and
494	pharmaceuticals in killer whale (Orcinus orca) faecal samples by liquid chromatography
495	tandem mass spectrometry. Conserv. Physiol. 11(1), coad081 (2023).
496	https://doi.org/10.1093/conphys/coad081
497	29. Aguilar, A., Borrell, A., and Pastor, T. Biological factors affecting variability of persistent
498	pollutant levels in cetaceans. J. Cetacean Res. Manage. S1, 83-116 (1999).

- 499 https://doi.org/10.47536/jcrm.v1i1.264
- 500 30. Kucklick, J., Boggs, A., Huncik, K., Moors, A., Davis, E., Ylitalo, G., McConnell, M.,
- 501 Makris, C., and Wells, R.S. Temporal trends of persistent organic pollutants in Sarasota
- 502 Bay common bottlenose dolphins (*Tursiops truncatus*). *Front. Mar. Sci.* **9**, 1–14 (2022).
- 503 https://doi.org/10.3389/fmars.2022.763918

504	31. Baptista, G., Kehrig, H.A., Di Beneditto, A.P.M., Hauser-Davis, R.A., Almeida, M.G.,
505	Rezende, C.E., Siciliano, S., de Moura, J.F., and Moreira, I. Mercury, selenium and stable
506	isotopes in four small cetaceans from the southeastern Brazilian coast: Influence of
507	feeding strategy. Environ. Pollut. 218, 1298-1307 (2016).
508	doi.org/10.1016/j.envpol.2016.08.088
509	32. Drug Enforcement Administration. Drug fact sheet: Fentanyl [Fact sheet] (2022)
510	www.dea.gov/sites/default/files/2023-06/Fentanyl%202022%20Drug%20Fact%20Sheet-
511	update.pdf
512	33. Van Dolah, F. M., Neely, M. G., McGeorge, L. E., Balmer, B. C., Ylitalo, G. M., Zolman, E.
513	S., Speakman, T., Sinclair, C., Kellar, N. M., Rosel, P. E., and Mullin, K.D. Seasonal
514	variation in the skin transcriptome of common bottlenose dolphins (Tursiops truncatus)
515	from the northern Gulf of Mexico. PLoS One, 10(6), e0130934 (2015).
516	https://doi.org/10.1371/journal.pone.o130934
517	34. Ramos-Matos C. F, Bistas K. G, Lopez-Ojeda W. Fentanyl [Updated 2023 May 29]. In:
518	StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2024). Available from:
519	https://www.ncbi.nlm.nih.gov/books/NBK459275/
520	35. Berger, F. M., Kletzkin, M., Ludwig, B. J., and Margolin, S. The history, chemistry, and
521	pharmacology of carisoprodol. Ann. NY Acad. Sci. 86(1), 90-107 (1960).
522	https://doi.org/10.1111/j.1749-6632.1960.tb42792.x
523	36. LiverTox: Clinical and research information on drug-induced liver injury. National Institute
524	of Diabetes and Digestive and Kidney Diseases, Bethesda (MD), (2019). PMID:
525	31643176.

- 526 37. Conermann T, and Christian D. Carisoprodol [Updated 2024 May 2]. In: *StatPearls*
- 527 [Internet]. Treasure Island (FL): StatPearls Publishing (2024). Available from:
- 528 https://www.ncbi.nlm.nih.gov/books/NBK553077/
- 529 38. Sangster, J. *LOGKOW Databank*. Sangster Res. Lab., Montreal Quebec, Canada (1993).
- 530 39. Meylan, W. M., and Howard, P. H. Atom/fragment contribution method for estimating
- 531 octanol–water partition coefficients. J. Pharm. Sci. 84(1), 83–92 (1995).
- 532 https://doi.org/10.1002/jps.2600840120
- 40. Hansch, C., Leo, A. and Hoekman, D. *Exploring QSAR: hydrophobic, electronic, and steric constants* (Vol. 2). Washington, DC: American Chemical Society (1995).
- 41. Cooper, J., Jauniaux, E., Gulbis, B., Quick, D., and Bromley, L. Placental transfer of fentanyl
 in early human pregnancy and its detection in fetal brain. *Brit. J. Anaesth.* 82(6), 929–931
- in early human pregnancy and its detection in fetal brain. *Brit. J. Anaesth.* 82(6), 929–931
 (1999). https://doi.org/10.1093/bja/82.6.929
- 42. Weiner, C. P. *Drugs for Pregnant and Lactating Women E-Book*. Elsevier Health Sciences,
 (2018).
- 540 43. Cohen, R. S. Fentanyl transdermal analgesia during pregnancy and lactation. *J. Hum. Lact.*541 25(3), 359–361 (2009). https://doi.org/10.1177/08903344093334
- 44. Nordeng, H., Zahlsen, K., and Spigset, O. Transfer of carisoprodol to breast milk. *Therap. Drug Monit.* 23(3), 298–300 (2001).
- 544 45. Venn-Watson, S., Garrison, L., Litz, J., Fougeres, E., Mase, B., et al. Demographic clusters
- identified within the northern Gulf of Mexico common bottlenose dolphin (*Tursiops*
- 546 *truncates*) unusual mortality event: January 2010-June 2013. *PLoS One* **10(2)**, e0117248
- 547 (2015). https://doi.org/10.1371/journal.pone.0117248

548	46. Phillips N. M.	, and Rosel P. E.	A method for	prioritizing	research on	common bottlenose
-----	--------------------	-------------------	--------------	--------------	-------------	-------------------

- 549 dolphin stocks through evaluating threats and data availability: Development and
- application to bay, sound and estuary stocks in Texas. NOAA Tech. Memo. NMFS-
- 551 SEFSC-665 (2014). http://doi.org/10.7289/V5F769H8
- 47. Fossi, M. C., and Panti, C. (Eds.). *Marine Mammal Ecotoxicology: Impacts of Multiple Stressors on Population Health*. London, U.K.: Academic Press (2018).
- 48. Wilson, W., and Adami, L. *Nueces County traffic stop turns into largest liquid fentanyl drug bust in US history*. KIII News. (2022, December 5).
- 556 www.kiiitv.com/article/news/local/nueces-county-traffic-stop-turns-into-largest-liquid-
- 557 fentanyl-drug-bust-in-us-history/503-80e7b86d-0f82-420f-bb0b-f1c8d244aebc
- 49. Tanoue, R., Margiotta-Casaluci, L., Huerta, B., Runnalls, T. J., Nomiyama, K., Kunisue, T.,
- 559 Tanabe, S., and Sumpter, J. P. Uptake and metabolism of human pharmaceuticals by fish:
- 560 A case study with the opioid analgesic tramadol. *Environ. Sci. Tech.* 51(21), 12825–
- 561 12835 (2017). https://doi.org/10.1021/acs.est.7b03441
- 562 50. Srain, H. S., Beazley, K. F., and Walker, T. R. Pharmaceuticals and personal care products
- and their sublethal and lethal effects in aquatic organisms. *Environ. Rev.* **29(2)**, 142–181
- 564 (2021). https://doi.org/10.1139/er-2020-0054
- 565 51. Weijs, L., and Zaccaroni, A. Toxicology of marine mammals: New developments and
- 566 opportunities. Arch. Environ. Contam. Toxicol. **70(1)**, 1–8 (2016).
- 567 https://doi.org/10.1007/s00244-015-0233-9
- 568 52. Shane S.H. Occurrence, movements, and distribution of bottlenose dolphin, *Tursiops* 569 *truncatus*, in southern Texas. *Fish. Bull.* **78(3)**, 593–601 (1980)

570	53. Leatherwood S., and Reeves R. R. Abundance of bottlenose dolphins in Corpus Christi Bay				
571	and coastal southern Texas. Contrib. Mar. Sci. 26, 179–199 (1983).				
572	http://hdl.handle.net/1969.3/21288				
573	54. Handley L. R., Spear K. A., Leggett A., and Thatcher C.A. Mississippi Sound. United States				
574	Geological Survey, 2012 (2012). www.usgs.gov/publications/mississippi-sound#connect				
575	55. Miller L. J., Mackey A. D., Solangi M., and Kuczaj S. A. Population abundance and habitat				
576	utilization of bottlenose dolphins in the Mississippi Sound. Aqua. Conserv. 23(1), 145-				
577	151 (2013). https://doi.org/10.1002/aqc.2278				
578	56. Pitchford, J. L., Howard, V. A., Shelley, J. K., Serafin, B. J., Coleman, A. T., and Solangi, M.				
579	Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus)				
580	distributions in the Mississippi Sound. Aqua. Conserv. 26(2), 289–306 (2015).				
581	https://doi.org/10.1002/aqc.2547				
582	57. Vollmer N.L., et al. Assessing common bottlenose dolphin (Tursiops truncatus) population				
583	structure in Mississippi Sound and coastal waters of the North Central Gulf of Mexico.				
584	Aqua. Conserv. 31(10), 2951–2966 (2021). https://doi.org/10.1002/aqc.3668				
585	58. Garrison L. P., Ortega-Ortiz, J., and Rappucci, G. Abundance of coastal and continental shelf				
586	stocks of common bottlenose and Atlantic spotted dolphins in the Northern Gulf of				
587	Mexico: 2017-18. NOAA Tech. Memo. NMFS-SEFSC PRD-2021-01 (2021).				
588	https://doi.org/10.25923/vk95-t881				
589	59. Sinclair, C., Sinclair, J., Zolman, E. S., Martinez, A., Riishøjgaard, L. P., and Barry, K. P.				
590	Remote biopsy field sampling procedures for cetaceans used during the Natural Resource				
591	Damage Assessment of the MSC252 Deepwater Horizon oil spill. NOAA Tech. Memo.				
592	NMFS-SEFSC-670 (2015). http://doi.org/10.7289/V5CC0XN0				

- 593 60. Amer, B., Deshpande, R. R., and Bird, S. S. Simultaneous quantitation and discovery
- 594 (SQUAD) analysis: Combining the best of targeted and untargeted mass spectrometry-
- 595 based metabolomics. *Metabolites* **13**(5), 648 (2023).
- 596 https://doi.org/10.3390/metabo13050648
- 597 61. Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., and Hollender, J.
- 598Identifying small molecules via high resolution mass spectrometry: Communicating
- 599 confidence. *Environ. Sci. Technol.* **48(4)**, 2097–2098 (2014).
- 600 https://doi.org/10.1021/es5002105
- 601 62. Boggs, A. S., Schock, T. B., Schwacke, L. H., Galligan, T. M., Morey, J. S., McFee, W. E.,
- and Kucklick, J.R. Rapid and reliable steroid hormone profiling in *Tursiops truncatus*
- blubber using liquid chromatography tandem mass spectrometry (LC-MS/MS). Anal.
- 604 Bioanal. Chem. 409(21), 5019–5029 (2017). https://doi.org/10.1007/s00216-017-0446-z
- 605 63. Wittmaack, C. et al. Small blubber samples (50 mg) sufficient for analyses of 10 stress and
- reproductive steroid hormones in gray and fin whales via liquid chromatography mass
- 607 spectrometry. *Front. Mar. Sci.* **8**, 2080 (2022). https://doi.org/10.3389/fmars.2021.808764

Highlights

- Bottlenose dolphins are bioindicator species of ecosystem health •
- Pharmaceuticals found in the blubber of 30 dolphins (24 live) in the Gulf of Mexico •
- Detected pharmaceuticals included opioids, muscle relaxants, and sedatives •
- Pharmaceuticals in the marine ecosystem appear to be a long-standing issue •

. a lo.

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER				
Biological samples						
N/A- wild animals	N/A- wild animals	N/A- wild animals				